

ISI Type-A Mock Test

Circle the correct option. Correct Answer = 4 marks, Leave Blank = 1, Wrong Answer = 0

Name:
Date:

1. If $\sqrt{3} + 1$ is a root of the equation $3x^3 + ax^2 + bx + 12 = 0$, where a and b are rational numbers, then b is equal to
A. -6 B. 2 C. 6 D. 10
2. If $x = \log_e \left(\frac{1}{\sqrt{\tan 15^\circ}} \right)$, then

$$\frac{\sum_{n=0}^{\infty} e^{-2nx}}{\sum_{n=0}^{\infty} (-1)^n e^{-2nx}} =$$
A. $\sqrt{3}$ B. $\frac{1}{\sqrt{3}}$ C. $\frac{\sqrt{3}+1}{\sqrt{3}-1}$ D. $\frac{\sqrt{3}-1}{\sqrt{3}+1}$
3. Let S be the set of all complex numbers of the form $\frac{z+1}{z-3}$, where z varies over the set of all complex numbers with $|z| = 1$. Then S is;
A. a straight line B. a circle of radius 0.5 C. a circle of radius 0.25 D. an ellipse with axes 0.5 and 0.25
4.

$$\sum_{0 \leq i < j \leq n} (-1)^{i-j+1} \binom{n}{i} \binom{n}{j} =$$
A. $\binom{2n-1}{n}$ B. $\binom{2n}{n}$ C. $\binom{2n+1}{n}$ D. None of the above.
5. Let S_1 be a square of unit area. A circle C_1 is inscribed in S_1 , a square S_2 is inscribed in C_1 and so on. Let a_n denote the sum of the areas of the circles C_1, C_2, \dots, C_n , then $\lim_{n \rightarrow \infty} a_n =$
A. $\frac{\pi}{2}$ B. $\frac{\pi}{3}$ C. $\frac{\pi}{4}$ D. $\frac{\pi}{\sqrt{2}}$
6. Let x is a cube root of unity. Then, the number of distinct possible values of the expression $(1 + x + x^2 + \dots + x^m)^n$ where m, n are positive integers is;
A. 4 B. 5 C. 7 D. ∞
7. Let $f, g : \mathbb{R} \rightarrow \mathbb{R}$ be two continuous function such that they do not intersect. The graph of which function must lie on one side of the x-axis? A. f B. $f + g$ C. $f - g$ D. fg
8. The number of real zeros of the polynomial $P(x) = (x - 1)(x - 2) \dots (x - 2019) + 2019!$ is;
A. 0 B. 1 C. 1009 D. 2019
9. There are 2019 person in a party. Each of them has made exactly 5 handshakes with each other. How many handshakes took place in the party? A. $\binom{2019}{3} \times 3$ B. $2019!^3$ C. $3!^{2019}$ D. None of these.
10. Let z be a five digit number of the form $x679y$ which is divisible by 72. Then, the number $z/72$ lies in the range of;
A. [200, 350] B. [400, 450] C. [500, 550] D. [600, 650]
11. Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function such that; $f(0) = 2, f'(0) = 3, f''(x) = f(x)$. Then $f(4) =$
A. $\frac{5(e^8+1)}{e^4}$ B. $\frac{5e^8-1}{2e^4}$ C. $\frac{2e^4}{5(e^8-1)}$ D. None of these.
12.

$$\lim_{n \rightarrow \infty} \left(\frac{n!}{(2019n)^n} \right)^{1/n} =$$
A. $\frac{1}{2019e}$ B. $\frac{2019}{e}$ C. $\frac{e}{2019}$ D. $2019e$
13. What is the last two digits of 81^{2897} ? A. 31. B. 41. C. 51. D. 61.
14. Consider all 2×2 matrices with entries from only one digit positive integers. The sum of determinants of all these matrices is equal to;
A. 0 B. 1 C. odd number except 1. D. 9!.
15. Suppose we have x_1 lines on the plane parallel in one direction, x_2 lines parallel in another direction, \dots, x_{10} lines parallel in another direction. If $x_i = i \quad \forall i = 1, 2, \dots, 10$, then the maximum possible number of intersections of these lines i ;
A. 1200 B. 1260 C. 1320 D. 1380